723 research outputs found

    A Five-Stage Solid-Fuel Sounding-Rocket System

    Get PDF
    A five-stage solid-fuel sounding-rocket system which can boost a payload of 25 pounds to an altitude of 525 nautical miles and that of 100 pounds to 300 nautical miles is described. Data obtained from a typical flight test of the system are discussed

    An intelligent alternating current-optimal power flow for reduction of pollutant gases with incorporation of variable generation resources

    Get PDF
    Frequent escalations in fuel costs, environmental concerns, and the depletion of non-renewable fuel reserves have driven the power industry to significant utilisation of renewable energy resources. These resources cannot satisfy the entire system load demand because of the intermittent nature of variable generation resources (VGRs) such as wind and solar. Therefore, there is a need to optimally schedule the generating units (thermal and VGRs) to reduce the amount of fuel used and the level of emissions produced. In this study, an AC-power flow in conjunction with combined economic and environmental dispatch approach through the implementation of a modified constricted coefficient particle swarm optimisation was used to minimise the fuel cost and the level of emission gases produced. The approach was applied to the Institute of Electric and Electronic Engineers 30 bus test system through three different load conditions: base-load, increase-load and critical-load. The results showed the practicality of the proposed approach for the simultaneous reduction of the total generation cost and emission levels on a large electrical power grid while maintaining all the physical and operational constraints of the system

    Small signal stability analysis of a four-machine system with placement of multi-terminal high voltage direct current link

    Get PDF
    Inter-area oscillation caused by weak interconnected lines or low generator inertia is a critical problem facing power systems. This study investigated the performance analysis of a multi-terminal high voltage direct current (MTDC) on the damping of inter-area oscillations of a modified two-area four-machine network. Two case studies were considered, utilising scenario 1: a double alternating current (AC) circuit in linking Bus_10 and Bus_11; and scenario 2: a three-terminal line commutated converter high voltage direct current system in linking Bus_6 and Bus_11 into Bus_9. It was found that scenario 2 utilising MTDC link with a robust controller provided quick support in minimising the network oscillations following a fault on the system. The MTDC converter controllers’ setup offered sufficient support for the inertia of the AC system, thus providing efficient damping of the inter-area oscillation of the system

    Impact of LCC–HVDC multiterminal on generator rotor angle stability

    Get PDF
    Multiterminal High Voltage Direct Current (HVDC) transmission utilizing Line Commutated Converter (LCC-HVDC) technology is on the increase in interconnecting a remote generating station to any urban centre via long distance DC lines. This Multiterminal-HVDC (MTDC) system offers a reduced right of way benefits, reduction in transmission losses, as well as robust power controllability with enhanced stability margin. However, utilizing the MTDC system in an AC network bring about a new area of associated fault analysis as well as the effect on the entire AC system during a transient fault condition. This paper analyses the fault current contribution of an MTDC system during transient fault to the rotor angle of a synchronous generator. The results show a high rotor angle swing during a transient fault and the effectiveness of fast power system stabilizer connected to the generator automatic voltage regulator in damping the system oscillations. The MTDC link improved the system performance by providing an alternative path of power transfer and quick system recovery during transient fault thus increasing the rate at which the system oscillations were damped out. This shows great improvement compared to when power was being transmitted via AC lines

    Flight Performance of a Spin-Stabilized 20-Inch-Diameter Solid-Propellant Spherical Rocket Motor

    Get PDF
    A successful flight test of a spin-stabilized 20-inch-diameter solid-propellant rocket motor having a propellant mass fraction of 0.92 has been made. The motor was fired at altitude after being boosted by a three-stage test vehicle. Analysis of the data indicates that a total impulse of 44,243 pound-second with a propellant specific impulse of approximately 185 was achieved over a total action time of about 12 seconds. These results are shown to be in excellent agreement with data from ground static firing tests of these motors. The spherical rocket motor with an 11-pound payload attained a velocity of 15,620 feet per second (m = 16.7) with an incremental velocity increase for the spherical motor stage of 12,120 feet per second
    • …
    corecore